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Phase diagram of an Ising model with long-range frustrating interactions: A theoretical analysis
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We present a theoretical study of the phase diagram of a frustrated Ising model with nearest-neighbor
ferromagnetic interactions and long-range~Coulombic! antiferromagnetic interactions. For nonzero frustration,
long-range ferromagnetic order is forbidden, and the ground state of the system consists of phases character-
ized by periodically modulated structures. At finite temperatures, the phase diagram is calculated within the
mean-field approximation. Below the transition line that separates the disordered and the ordered phases, the
frustration-temperature phase diagram displays an infinite number of ‘‘flowers,’’ each flower being made by an
infinite number of modulated phases generated by structure combination branching processes. The specificities
introduced by the long-range nature of the frustrating interaction and the limitation of the mean-field approach
are finally discussed.

PACS number~s!: 05.50.1q, 05.70.Fh, 64.60.Cn
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I. INTRODUCTION

There are many physical examples in which a sho
ranged tendency to order is opposed by a long-range frus
ing interaction. In diblock copolymers formed by two mut
ally incompatible polymer chains attached to each other,
repulsive short-range forces between the two types
components tend to induce phase separation of the melt
total segregation is forbidden by the covalent bonds that
the subchains together. A microphase separation trans
occurs instead at low enough temperature, and the sys
then forms phases with a periodical modulation of structu
rich in one component or the other, such as lamel
hexagonal, or cubic phases@1,2#. In a similar way, self-
assembly in water-oil-surfactant mixtures results from
competition between the short-range tendency of water
oil to phase separate and the stoichiometric constraints
erated by the presence of surfactant molecules, constr
that act as the electroneutrality condition in a system
charged particles@3–5#. The same kind of physics also aris
in quite different fields. For instance, stripe formation
doped antiferromagnets like cuprates has been ascribed
frustrated electronic phase separation, by which a strong
cal tendency of the holes to phase separate into a hole
‘‘metallic’’ phase and a hole-poor antiferromagnetic phase
prohibited by the long-range Coulombic repulsion betwe
the holes@6,7#. A last example is provided by the structur
or topological frustration in glass-forming liquids: the dr
matic slowing down of the relaxation that leads to the gl
formation has been interpreted as resulting from the prese
of frustration-limited domains whose formation comes fro
the inability of the locally preferred arrangement of the m
ecules in the liquid to tile space periodically@8#; topological
frustration may also lead to low-temperature defect-orde
phases, such as the Frank-Kasper@9# phases in bimetallic
systems.

A coarse-grained description of the above-mention
PRE 621063-651X/2000/62~6!/7781~12!/$15.00
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situations1 involves lattice or continuum models with com
peting short-range and Coulombic interactions. The purp
of the present work is to study the phase diagram of suc
model, namely the Coulomb frustrated Ising ferromagne
which Ising spins placed on a three-dimensional cubic lat
interact via both nearest-neighbor ferromagnetic coupli
and long-range Coulomb-like antiferromagnetic terms. T
model is introduced in more detail in Sec. II and its grou
state as a function of the frustration parameter, i.e., of
ratio of the antiferromagnetic coupling strength over the f
romagnetic one, is studied in Sec. III. In Sec. IV, we inve
tigate the finite-temperature phase diagram in the mean-
approximation. Finally, the effect of the long-range nature
the frustrating forces~when comparing to the phase behavi
of the prototypical model with competing, but short-rang
interactions, the axial next-nearest-neighbor Ising~ANNNI !
model @10–12#!, as well as the limitations of the mean-fie
approach are discussed in Sec. V.

II. THE COULOMB FRUSTRATED ISING
FERROMAGNET

The model is described by the Hamiltonian

H52J(̂
i j &

SiSj1
Q

2 (
iÞ j

v~r i j !SiSj , ~1!

where,J,Q.0 are the ferromagnetic and antiferromagne
coupling strengths,Si561 are Ising spin variables place
on the sites of a three-dimensional cubic lattice,^ i j & denotes
a sum restricted to nearest neighbors,r i j is the vector joining
sitesi and j, andv(r ) represents a Coulomb-like interactio
term with v(r );1/ur u when ur u→`. ~Throughout the paper
the lattice spacing is taken as the unit length.! The above

1Additional examples include cross-linked polymer mixtures,
terpenetrating networks, and ultrathin films.
7781 ©2000 The American Physical Society



e
an
s,
lly

f

nc

u
s

la

r
r

c
t

o

th

in
e
’s

la
,

un

ame
in-

ous
egli-
but
r of

(
net,
pins
the

of

ag-
ag-
es
’’
e-
ana-
t-
e

llel
dic
uch
tem

e

rgy
and

ing
the

the

le,

s
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Hamiltonian is essentially the ‘‘hard-spin’’ version of th
coarse-grained free-energy functional derived by Ohta
Kawasaki @13# for symmetric diblock copolymer system
with Si561 characterizing whether the system is loca
rich in one type of monomer or another,J/kBT playing the
role of the Flory-Huggins interaction parameter, andQ/J
being proportional to 1/N2, whereN is the overall degree o
polymerization of a copolymer.

In addition to considering the true Coulombic term,v(r )
51/ur u, we have also studied, for mathematical convenie
in the analytical treatment, an expression ofv(r ) in terms of
the lattice Green’s function that satisfies the Poisson eq
tion on the three-dimensional cubic lattice. In the latter ca
v(r ) is then simply given, up to a multiplying factor of 4p,
as the inverse Fourier transform of the inverse lattice Lap
ian,

v~r !5
4p

N (
k

exp~2 ik•r !

2 (
a5x,y,z

@12cos~ka!#

, ~2!

whereN is the number of lattice sites and the sum ovek
5(kx ,ky ,kz) is restricted to the first Brillouin zone. Fo
large ur u the lattice Green’s function behaves as 1/(4pur u),
so that the expression in Eq.~2! has the proper asymptoti
behavior. In practice, even at the next-neighbor distance,
difference between the true Coulombic form and Eq.~2! is
very small@14#. One has, however, to be careful about tw
points. The first one is that thev(r ) defined in Eq.~2! has a
nonzero, finite value atr50, v(0)50.252 731 009 86 . . . , a
value that must of course be excluded when considering
Hamiltonian in Eq. ~1!.2 For instance, Eq.~1! when ex-
pressed in Fourier space, can be written as

H5
J

2 (
k

V̂~k!uŜ~k!u2, ~3!

where

V̂~k!522 (
a5x,y,z

cos~ka!1
4pQ

J

3F 1

2 (
a5x,y,z

@12cos~ka!#

2v~0!G ~4!

and Ŝ(k) is the lattice Fourier transform of the Ising sp
variable Si . To assess the quantitative difference betwe
the Coulombic form and that involving the lattice Green
function, we have calculated the energy of the system
several periodic configurations of the spins. For periodic
mellar patterns of large widthm, the difference is negligible
but it increases whenm decreases. For a Ne´el antiferromag-
netic state, the Coulombic energy is related to the Madel

2The correction term involvingv(0) in Eq. ~4! has been omitted in
previous papers@15,16#, but it leads only to very small correction
when the parameterQ/J is small.
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constant and is equal to20.873 782 . . . ,whereas the lattice
Green’s-function expression gives21.064 356 992.

The second point worth mentioning is that thev(r ) ex-
pressed in terms of the lattice Green’s function has the s
discrete symmetry as the nearest-neighbor ferromagnetic
teraction, whereas the true Coulombic form has continu
rotational symmetry instead. The consequences are n
gible for the ground-state and for mean-field analyses,
may become important for the finite-temperature behavio
the system in other approximations@17#.

III. PHASE DIAGRAM AT ZERO TEMPERATURE

In the absence of the antiferromagnetic interactionQ
50) the model reduces to the standard Ising ferromag
and the ground state of the system is obtained when all s
are aligned in a ferromagnetic state. Oppositely, when
ferromagnetic interaction is set to zero (J50), the model is
equivalent to a Coulomb lattice gas and the ground-state
the system is a Ne´el antiferromagnetic state. WhenQÞ0, the
Coulombic interaction prevents the existence of a ferrom
netic phase, and in the thermodynamic limit, the total m
netization~charge! is constrained to be zero. Instead, phas
with modulated order, i.e., with periodic patterns of ‘‘up
and ‘‘down’’ spins subject to the constraint of zero magn
tization, are formed. We have studied these phases both
lytically with the long-range interactions modeled by the la
tice Green’s function and numerically with the tru
Coulombic form.

For small values of the frustration parameterQ/J, the
ground state consists of lamellar phases in which para
planes of ferromagnetically aligned spins form a perio
structure along the orthogonal direction. The system in s
a state can be mapped onto a finite one-dimensional sys
of length 2m, wherem denotes the width of the lamella
@18,19#.

The short-range ferromagnetic contribution to the ene
per spin of a lamellar phase can be readily calculated,
one gets

ESR52JS 32
2

mD . ~5!

The Coulombic energy due to the long-range compet
forces can be calculated in reciprocal space by using
expression in terms of the inverse lattice Laplacian~see Sec.
II !. For a lamellar phase of period 2m, the wave vectors to be
considered have only one nonzero component that takes
values k5p(2n11)/m with 0<n,m21. Correspond-
ingly, the lattice Fourier transform of the Ising spin variab
Ŝ(k)5(1/AN)( i 51

N Siexp(ik•r i), whereN is the total number
of lattice site, has its modulus given by

uŜ~k!u5uŜ~k!u5
AN

msin~k/2!
. ~6!

Using then the identities

(
n50

m21
1

sin@p~2n11/~2m!#2
5m2, ~7!
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(
n50

m21
1

sin@~p~2n11/~2m!#4
5

m4

3
1

2m2

3
, ~8!

one finds that the sum rule(kuŜ(k)u25N is properly satis-
fied and that the Coulombic energy per site,Ec , is equal to

Ec5QF (
n50

m21
p

2sin@p~2n11!/~2m!#4
22pv~0!G ~9!

5QFpm2

6
1p@ 1

3 22v~0!#G . ~10!

In Appendix A, we show that the same expression for
Coulombic energy is obtained when performing the calcu
tion in real space with an effective one-dimensional pot
tial; this latter includes a convergence factor that helps h
dling conditionally convergent sums appearing as a resu
the long-range nature of the forces and that is taken to ze
the end of the calculation. It is worth mentioning that t
above calculation in reciprocal space implicitly assumes
the contribution from thek50 term is zero; physically, this
means that the periodic system is embedded in a med
with infinite dielectric constant.~For a more detailed discus
sion, see Ref@20#.! Since for simulations on ionic systems,
similar choice is generally adopted@20#, both numerical and
analytical calculations for our model have been perform
using such metallic boundary conditions.

Figure 1 shows the total energy per spin,E/J, which is
the sum of the two contributions in Eqs.~5! and~10! for the
inverse lattice Laplacian expression, as a function ofQ/J for
small values of the frustration parameterQ/J. ~The plot for
the true Coulombic potential is very similar.! The slope of
each straight line corresponds to the Coulombic energy
the intercept with they axis corresponds to the short-ran

FIG. 1. Ground-state energy of the lamellar phases withm
51,2, . . . ,7 as afunction of the frustration parameterQ/J for the
inverse lattice Laplacian expression ofv(r ). When Q/J goes to
zero, the period of the lamellar phases increases. The inset zoo
on the region of vanishing frustration parameters, which co
sponds to the lower left region of the figure.
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ferromagnetic energy. For a given frustration parameterQ/J,
the ground state is given by the straight line that has
smallest energy. WhenQ/J→0, the ground state consists o
lamellar phases whose period becomes larger and larger
whose range of stability decreases. The values ofQ/J corre-
sponding to transitions between two successive ground-s
structures are obtained by solving the equationE(m)
5E(m11). Therefore, whenQ/J goes to zero,m is asymp-
totically given by

m;~Q/J!21/3, ~11!

a behavior that is analogous to that observed for lame
phases of diblock copolymer systems at low temperature
the so-called strong segregation limit@13#. ~Recall thatQ/J
plays the role of 1/N2 whereN is the total number of seg
ments on a polymer.! Note that for a large widthm, the
difference between Eq.~10! and the value obtained from th
true Coulombic term is only weakly varying withm and can
be taken as a constant, so that Eq.~11! also provides a very
accurate estimate both for the sequence of lamellar ph
and for the transition values ofQ/J for the true Coulombic
potential.

When Q/J increases, the period of the lamellar phas
decreases until one reachesm51 for Q/J50.637. For a re-
gion of the frustration parameter between 0.637 and 1.8
this lamellar phase is then the most stable phase. In a na
interval betweenQ/J51.800 andQ/J52.122 there is a cas
cade of phases (13m23`), with m2 decreasing untilm2
52 as the frustration parameter increases@see Fig. 2~a!#. For
2.122,Q/J,3.820, the stable phase is (1323`). Note
that tubular phases of the type (m13m23`) with both m1
and m2.1 are never stable. For 3.820,Q/J,6.237, the
ground state is a 1313` tube. In another interval 6.237
,Q/J,6.611, the system loses translational invariance
the third direction, and one observes a cascade of orthorh
bic phases (1313m3), with m3 decreasing as the frustra
tion increases untilm352. Between 6.611 and 9.549, th
stable phase is (13132). ForQ/J.9.549, the ground state
is the standard Ne´el state (13131) @see Fig. 3~a!#. It is
noticeable that periodic structures of the type (m13m2
3m3) with m1 ,m2 ,m3.1 and at least one of thema’s finite
always have higher energies than those of the seque
(m13`3`), (`3m23`), (`3`3m3), whatever the
value of the frustration parameter~see Appendix B!.

The same analysis can be repeated withv(r ) given by the
true Coulomb interaction. The exact same sequence
ground states as before is obtained, but the values of
frustration parameter at the transition points are somew
shifted: For instance, the lamellar phasem51 is the most
stable phase when 0.627,Q/J,5.21, the cascade of ‘‘tubu
lar’’ phases (13m23`) occurs aroundQ/J55.22, and (1
323`) is stable for 5.23,Q/J,6.17 @see Fig. 2~b!#. The
cascade of ‘‘orthorhombic’’ phases (1313m3), with m3
.1, appears aroundQ/J514.63 @see Fig. 3~b!#. The stan-
dard Néel state is stable forQ/J.15.33. It is worth mention-
ing that the counterparts of the lamellar, tubular, and ort
rhombic phases in diblock copolymer systems@2# @systems
that are described at a coarse-grained level by the scalar
theory associated with the Hamiltonian in Eq.~1!# are the
lamellar, columnar, and cubic phases, respectively.
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In the region of stability of the lamellar phases, we ha
also investigated if more complex structures involving s
eral one-dimensional modulations of ferromagnetically
dered layers could be present and if multiphase transi
points at which more than simply two phases coexist co
occur. For both questions, the answer is negative. As an
ample, we give in Appendix C the analytical expressions
the energy of the mixed lamellar phases that are formed
mixing lamellae of widthm51 and lamellae of widthm
52 with some given periodic modulation. The simplest
such phases, which following the notation used by Selke

FIG. 2. Ground-state energy of the tubular phases withm2

51,2, . . . ,7~full lines! and m25` ~dashed line! as a function of
the frustration parameterQ/J. ~a! For the inverse lattice Laplacia
expression, the tubular phases, (13m23`) with m2.1, are stable
for frustration parameters 1.800,Q/J,3.820.~b! For the true Cou-
lombic potential, the tubular phases are stable for 5.21,Q/J
,6.17. ^1&, ^132& and ^131& are short-hand notations for^1
3`3`&, ^1323`&, and ^1313`&, respectively. The vertica
dot-dashed lines are visual guides for denoting the stability reg
of the phases.
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Fisher in their study of the axial next-nearest-neighbor Is
~ANNNI ! model @11# we denotê 1n2p&, consists of a peri-
odic repetition of a fundamental pattern formed by a succ
sion of n lamellae of width 1 followed byp lamellae of
width 2. ~When n50, one recovers the simple lamella
phase of width 2, denoted̂2&, and whenp50, one recovers
the simple lamellar phase of width 1, denoted^1&.! It is easy
to check that such mixed lamellar phases are never stab
zero temperature. In particular, they have a~strictly! higher
energy than the pure lamellar phases at the zero-temper
transition point between thê1& and the^2& phases, atQ/J
52/p, so that this latter is a simple two-phase coexisten
point. This conclusion remains unchanged when one con

n

FIG. 3. Energy of the orthorhombic phases withm3

51,2, . . . ,7 as afunction of the frustration parameterQ/J. ~a! For
the inverse lattice Laplacian expression, the orthorhombic pha
(1313m3) with m3.1 are stable for frustration paramete
6.237,Q,9.549.~b! For the true Coulombic potential, the ortho
rhombic phases are for 14.63,Q/J,15.33.^131& is a short-hand
notation for ^1313`&. The vertical dot-dashed lines are visu
guides for denoting the stability region of the phases.
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ers even more complex mixed lamellar phases, such
^1n12p11n22p2 . . . 1ns2ps&, with na ,pa integers for a
51,2, . . .s, whose fundamental period is formed byn1 one-
layer lamellae followed byp1 two-layer lamellae, then byn2
one-layer lamellae, and byp2 two-layer lamellae, etc., two
successive lamellae being composed of spins of oppo
signs. We have also studied one-dimensional quasi cry
line arrangements of lamellae: by using binary substitut
rules, @21# we have built quasi periodic structures by iter
tion, but we have always found~numerically! that their en-
ergy is higher than that of the pure lamellar phases. N
finally that from the calculation of the energy of the mixe
lamellar phases at zero temperature, one can also stud
change of energy induced by adding defects in the pure
mellar phasê 2&. As shown in Appendix C, adding defec
always costs energy, the dominant effect being the incre
in the short-range energy. The same analysis, leading
similar conclusion, can be repeated for the whole rang
,Q/J,0.637 over which lamellar phases are favored.

IV. MEAN-FIELD THEORY

To describe phases with a spatial modulation of the m
netization, we consider a local mean-field approximation
mi5^Si& denotes the local magnetization at sitei, andm̂(k)
its lattice Fourier transform, the mean-field free energyFm f
is given by

bFm f

N
52

bJ

2N (
kÞ0

V̂~k!um̂~k!u22
1

N (
i

ln@2 cosh~bHi !#,

~12!

whereb51/kBT and the effective field on sitei, Hi , is equal
to 2J( j Þ iVi j mj , or in Fourier transformed space,

Ĥ~k!52JV̂~k!m̂~k!. ~13!

Minimization of the free energy with respect to the loc
magnetizations leads to the self-consistent set of equatio

mi5tanh~bHi !, ~14!

for each lattice site. One must then solve the coupled eq
tions, Eqs.~13! and ~14!, simultaneously, and subsequen
insert the solution in the expression of the free energy,
~12!. One finally searches for the configuration of themi ’s
that leads to the deepest minimum of the free energy fo
given temperature and a given value of the frustration par
eter.

To simplify the notation in the rest of the paper, units
temperature, energy, etc. will be chosen such thatkB5J
51.

A. Order-disorder transition line

Close to the transition between the disordered and
ordered phases, the magnetizationsmi are small and Eq.~14!
can be linearized,

mi'
Hi

T
. ~15!
as
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For a given value of the frustration parameter, the criti
temperatureTc(Q) is then given by

Tc~Q!52minkV̂~k!, ~16!

where the minimum ofV̂(k) is attained for a set of nonzer
wave vectors$kc(Q)% that characterize the ordering a
Tc(Q). For the inverse lattice Laplacian expression of t
long-range frustrating interaction, thekc(Q)’s vary continu-
ously with Q as follows:

kc5„6arccos~12ApQ!,0,0… for 0<Q,4/p, ~17!

kc5„p,6arccos~32ApQ!,0… for 4/p<Q,16/p,
~18!

kc5„p,p,6arccos~52ApQ!… for 16/p<Q,36/p,
~19!

kc5~p,p,p! for 36/p<Q. ~20!

One should of course add all vectors obtained by permu
the x,y,z coordinates in Eqs.~17!–~20!. The above ordering
wave-vectors correspond, respectively, to lamellar@Eq. ~17!#,
tubular @Eq. ~18!#, orthorhombic@Eq. ~19!#, and cubic or
Néel @Eq. ~20!# phases. WhenQ→0 the ordering wave vec
tor of the lamellar structure goes asQ1/4, which is analogous
to the result predicted for diblock copolymer systems in
weak-segregation limit@1,22#.

The corresponding critical temperatureTc(Q) is then
given by ~recall that bothT andQ are expressed in units o
J)

Tc~Q!5624ApQ14pQv~0! for 0<Q<36/p,
~21!

Tc~Q!52614pQS v~0!2
1

12D for 36/p<Q.

~22!

The mean-field approximation gives a line of second-or
phase transition from the disordered to the modulated pha
with Tc(Q) first decreasing withQ, reaching a minimum for
Qmin51/@4pv(0)2#51.245871 at Tc(Qmin)5621/v(0)
and then increasing again for finally reaching a regime
linear increase withQ whenQ>36/p. It is worth noting that
the term 4pQv(0) is important for large frustration: indeed
since v(0).1/6, it allows one to obtain a positive critica
temperature for allQ’s. @In general,v(0) should be larger
than the inverse of the number of nearest neighbors on
lattice, e.g., 6 on a simple cubic lattice.# For vanishingly
small frustration, the critical temperature goes continuou
to Tc

0 , the critical temperature of the pure Ising ferromagn

B. Structure combination branching processes

At zero temperature, we showed that the system exist
pure modulated phases, whose modulation is commensu
with the underlying lattice. At the transition between th
modulated and disordered phases, we have just seen tha
ordering wave vector varies continuously with the frustrati
parameter, hence indicating that a succession of incomm
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surate modulated phases is observed along the critical
As the temperature increases fromT50 to Tc(Q), one ex-
pects a cascade of ordered phases with commensurate s
modulations of increasing complexity until a point is reach
at which incommensurate phases appear; this is what is
served for instance in the much studied axial next-nea
neighbor Ising model@12#, in which the cascade of phases
produced by ‘‘structure combination branching processe
@12#. To illustrate how such branching processes proceed
consider first the low-temperature region of the phase
gram in which the simplest modulated phases, the^1& and
^2& lamellar phases, are stable~see Fig. 4!. Equations~13!
and ~14! must now be solved beyond the linear approxim
tion. The^1& phase corresponds to an alternate configura
of layers of up and down spins, withmi5m1(21)i , which
implies that the wave vector characterizing the modulat
has only one nonzero component equal tok5p. Using Eq.
~13! and Eq.~14!, one gets

m15tanhFm1

T
@22pQ14pQv~0!#G , ~23!

which has a nonzero solution when

T,22pQ14pQv~0!. ~24!

From Eq.~12!, the corresponding free energy is obtained

F ^1&

N
5S 12

pQ

2
12pQv~0! Dm1

2

2T lnF2 coshS m1

T
@22pQ14pQv~0!# D G .

~25!

FIG. 4. Mean-field phase diagram: structure combinat
branching processes occurring at finite temperatures for a regio
frustration parameter where the ground states consist of^1& and^2&
phases. The dashed line corresponds to the soliton-approach p
tion for the~upper! stability of the^2& phase. The units are chose
such thatkB5J51.
e.
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The ^2& phase corresponds to an alternate sequenc
pairs of ferromagnetically ordered layers and is characteri
by a wave vector whose only nonzero component isk
5p/2. The corresponding order parameterm2 satisfies the
following equation:

A2

2
m25tanhFA2m2

T
@22pQ12pQv~0!#G , ~26!

which has a nonzero solution when

T,22pQ12pQv~0!. ~27!

The associated free energy is

F ^2&

N
5S 12

pQ

2
1pQv~0! Dm2

2

2T lnF2 coshS m2A2

T
@22pQ12pQv~0!# D G .

~28!

The line of first-order transition at which the two phas
coexist is defined byF ^1&5F ^2& . In the T2Q phase dia-
gram, this line is almost vertical withQ.2/p. As we have
already stressed, no mixed phases coexist with the^1& and
^2& phases atT50 andQ52/p. However, the mixed̂12&
phase may become more stable at a nonzero tempera
This phase is characterized by the modulationmi

5(2A3/3)m12cos(2pi/31p/2), with the order paramete
m12 determined through the self-consistent equation

m125tanhFm12

T S 32
4p

3
Q14pQv~0! D G , ~29!

which has a nonzero solution for

T,32
4p

3
Q14pQv~0!. ~30!

The corresponding free energy is given by

F ^12&

N
5

1

3 S 32
4pQ

3
2pQv~0! Dm12

2

2
2T

3
lnH 2 coshFm12

T S 32
4p

3
Q14pQv~0! D G J .

~31!

Comparing now the free energy of the three phas
^1&, ^2&, ^12&, one can show that thê12& phase becomes
more stable than the other two in a wedge above a branc
point at Tb51.03 andQ50.63, at which the three phase
coexist. This represents the first step of a structure comb
tion branching process by which two adjacent phases, h
^1& and^2&, get separated above a given branching poin
finite temperature by a phase corresponding to the simp
combination structure, here the^12& phase. A careful exami-
nation of the thermodynamic quantities shows that the
tropy of the^12& phase increases more rapidly with tempe
ture than that of thê1& and ^2& phases; although it has a

n
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unfavorable energy contribution, thê12& phase become
thermodynamically stable when the temperature beco
high enough (Tb51.03). Moreover, for all temperatures b
tweenT50 andTb , both the entropy and the energy of th
^1& and ^2& phases are identical along the coexistence
between the two phases.

To study in more detail the branching processes, one
no longer rely on explicit analytical calculations as do
above, because they become rapidly intractable. To ob
the phase diagram in a more systematic way, the mean-
equations, Eqs.~12!–~14!, can be solved iteratively for finite
lattices with periodic boundary conditions. The thermod
namically stable solution corresponds to that with the sm
est free energy. For each temperature it is assumed tha
spin structure repeats itself afterN layers~only commensu-
rate lamellar structures are considered!. The iterative proce-
dure converges whenever the initial configuration is not
far from the equilibrium one. The iterative sequence is
follows. The effective fieldsHi are calculated from the set o
initial magnetizations$mi

0% via Eq. ~14!. One computes the
Fourier transform of the fieldsHi , and using Eq.~13! yields
then a new set of magnetizations$mi

1% that is used as the
input for the next iteration. The calculation should be p
formed for various values ofN for examining many different
commensurate structures. We have carried out the calc
tion for N up to 16. The phases with large-N periodicities,
like in the ANNNI phase diagram@12#, are only stable in a
small neighborhood of the critical line. Therefore, the m
of the phase diagram, except in the region close to the c
cal line, can be drawn by considering simple commensu
wave vectors.

The results are shown in Figs. 4 and 5. Figure 4 illustra
the structure combination process in the region between

FIG. 5. Mean-field phase diagram: a~partial! view of the infinite
sequence of ‘‘flowers’’ of complex modulated phases appearin
finite temperatures for the range of the frustration parameter w
the ground states are lamellar phases. The dashed and dotted
correspond to the soliton-approach prediction for the~upper! stabil-
ity of the ^2& and ^3& phases, respectively. The units are chos
such thatkB5J51.
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^1& and ^2& phases. Thê12& and ^1& phases are separate
by the ^122& phase, which itself is separated at higher te
perature from thê1& phase by thê132& phase, and so on
until one presumably reaches an accumulation point of
branching process along the transition line above which
^1& phase melts. Beyond this accumulation point cor
sponding to a sequence of^1n2& phases whenn→`, devil’s
staircases and incommensurate phases are expected@12#.
Figure 5 provides a broader picture of the phase diagram
the region where the modulated phases are lamellar:
phase diagram appears as a succession of flowers of com
modulated phases, separated by regions in which the
lamellar phaseŝ 1&,^2&, etc., are stable; the flowers ge
closer and closer when the frustration decreases. Note
the first branching point at which the simplest mixed pha
appears is always at a nonzero temperature.

C. Soliton approach

At high enough temperature, near the critical line, t
modulated phases are incommensurate, since we saw in
IV A that the ordering wave vector varies continuously wi
frustration. More insight in the phase behavior can then
provided by employing the soliton approach developed
Bak and co-workers@23,24#. More precisely, this approac
allows one to study analytically the melting of a commens
rate phase to incommensurate phases by focusing on the
havior of the domain walls that separate commensurate
gions, domain walls that can be considered as ‘‘solitons.’’
the following, we use the soliton method to investigate t
stability of commensurate phases at high temperature.

In the vicinity of the~upper! melting line of thê 2& phase,
one can expand the mean-field equations in the approp
order variables, which leads to the following free-ener
functional:

F

N
52

1

2 (
k

S V̂~k!1
1

b D um̂ku21
T

12

3(
t

(
k1 , . . . ,k4

d~k11k21k31k42t!m̂k1
m̂k2

m̂k3
m̂k4

1
T

30 (
t

(
k1 , . . . ,k6

d~k11k21k31k41k51k62t!

3m̂k1
m̂k2

m̂k3
m̂k4

m̂k5
m̂k6

1•••, ~32!

where a constant term has been discarded andt is a
reciprocal-lattice vector. The above expression, Eq.~32!,
contains both regular and ‘‘umklapp’’ terms; these latt
represented by the second and third contributions in
right-hand side of Eq.~32!, correspond to terms in which th
sum of the wave vectors is equal to a reciprocal-lattice v
tor, i.e., they keep track of the underlying lattice structu
and are responsible for the stability of the commensur
phases.

For studying the stability of thê2& phase near the critica
line, we consider wave vectors that are close to the orde
wave vectorkp/25(p/2,0,0) with small fluctuationsqx in the
direction of the modulation, here along thex axis, andq' in
the perpendicular layer. For the present case, it is suffic

at
re
nes

n



uc

g

y

ic

nc

io

f

f

r a

-
rre-
en-

ains
e

re-

ce,
in
ow
be

tion
hat
e

hat

an
een
he
pin

est-

-

u-
sly
ting
g
the

7788 PRE 62M. GROUSSON, G. TARJUS, AND P. VIOT
to truncate Eq.~32! after the fourth order@23#, and after
expanding the interaction term to second order in the fl
tuations, the free-energy functional can be rewritten as

F

N
52

1

2 (
q5qx ,q' ,

~r 1aqx1cqx
21c8q'

2 !um̂kp/21qu2

1T (
q1q2q3q4

d~k11k21k31k4!

3@ 1
2 m̂kp/21q1

m̂kp/21q2
m̂2kp/21q3

m̂2kp/21q4

1 1
12 ~m̂kp/21q1

m̂kp/21q2
m̂kp/21q3

m̂kp/21q4

1m̂2kp/21q1
m̂2kp/21q2

m̂2kp/21q3
m̂2kp/21q4

!#, ~33!

where r 5T2412pQ24pQv(0)<0, a5222pQ, c
52pQ, and c852pQ11. Now introducing two continu-
ous order parameters,

m1~r !5A2E d3q

~2p!3
exp~ iq•r !m̂kp/21q , ~34!

m2~r !5A2E d3q

~2p!3
exp~ iq•r !m̂2kp/21q ,

wherem2(r ) is the complex conjugate ofm1(r ), one can
express the free-energy functional in the followin
Ginzburg-Landau form:

F

N
5E d3r F1

2
cUS ]

]x
2 i

a

2cDm1U2

1
1

2
c8u¹'m1u2

1
1

2 S r 2
a2

4cD um1u21
T

8
um1u41

T

8
~m1

4 1m2
4 !G ,

~35!

where“'5(0,]/]y,]/]z) and the last term is generated b
the umklapp terms. Following Bak and von Boehm@23#, we
choose the following ansatz for the order parameters:

m65Aexp@6 if~x!#, ~36!

where the amplitudeA is a constant. Note thatf(x) is con-
stant in the commensurate^2& phase and thatA can be ob-
tained by minimizing the free energy in that phase, wh
givesA253ur u/T. Inserting the above expression in Eq.~35!
leads, up to a constant, to the following free-energy fu
tional per unit area perpendicular to thex direction:

F@f#5
cA2

2 E dxFf82~x!2
a

c
f8~x!2

TA2

12c
@1

2cos 4f~x!#G , ~37!

where the first term is minimized forf(x)5Ax/(2c), which
corresponds to an incommensurate spatial modulat
whereas the second term is minimized forf(x)50, i.e., in
-

h

-

n,

the commensuratê2& phase. The overall minimization o
F@f# is attained when the phase functionf(x) obeys the
sine-Gordon equation:

f9~x!14v sin@4f~x!#50, ~38!

where v5TA2/(24c). The solution consists of regions o
constant phase separated by solitons in whichf increases by
p/2 over a short distance. More generally, one can look fo
solution over a~large! distanceL that consists ofn equally
spaced solitons wherenp/25Lf8. The corresponding free
energy is given by@25,26#

F

cA2L
5F 4

p
v1/22U2a

2c UGf81
16

p
v1/2f8expS 2

2p

f8
v1/2D ,

~39!

wheref85np/(2L). The first term, proportional to the soli
ton density, is the formation energy; the second term co
sponds to a weak repulsion between solitons. The comm
surate phase is stable as long as the first term rem
positive; otherwise, thê2& phase becomes unstable with th
respect to soliton formation. The critical temperature cor
sponding to this melting transition is given by

T^2&2IC5422pQ14pQv~0!2
p

4

~12pQ!2

Q
, ~40!

and is shown as a dashed line in Figs. 4 and 5.
A similar analysis can be performed to study, for instan

the stability of thê 3& phase near the critical line. The ma
changes are that the relevant ordering wave vector is n
(p/3,0,0) and that the sixth-order umklapp terms should
kept in Eq. ~32!. A transition between thê3& phase and
incommensurate phases is found for

T^3&2IC5524pQ14pQv~0!

2
3p

4
u124pQuA5~524pQ!

1120pQ
. ~41!

The result is shown as dotted curves in Fig. 5. The devia
from the numerical solution of the mean-field equations t
is seen when moving further away from the critical lin
comes from the truncation of the free-energy functional t
is used in the soliton approach.

V. DISCUSSION

The fact that spin models with competing interactions c
give rise to complex spatially modulated phases has b
known for several decades. The ANNNI model is one of t
simplest and best-studied such system, in which Ising s
variables situated on a lattice are coupled via near
neighbor ferromagnetic interactions in (D21)-dimensional
layers orthogonal to, say, thex axis and via next-nearest
neighbor antiferromagnetic interactions along thex axis@12#.
The major additional ingredient that is present in the Co
lomb frustrated Ising ferromagnet and not the previou
studied models is the long-range nature of the compe
antiferromagnetic interaction. It is then worth reviewin
some of the differences between the phase behavior of
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three-dimensional Coulomb frustrated ferromagnet and
of the three-dimensional ANNNI and related models@27#.
First, the long 1/r range of the frustrating interaction forbid
ferromagnetic ordering for any nonzero value of the frust
tion parameterQ, and, as a result, there is no Lifshitz poi
@28# in the model. Second, there is no highly degener
multiphase point at zero temperature; this is in contrast w
the ANNNI model that possesses an infinitely degene
multiphase point at zero temperature, a point from wh
springs an infinite number of distinct commensurate mo
lated phases@29#. Third, the phase diagram of the Coulom
frustrated Ising ferromagnet, as illustrated in Fig. 5, displa
an infinite number of distinct flowers of complex spatia
modulated phases that emerge from zero-temperature
phase coexistence points, the extent of the flowers in thT
2Q phase diagram decreasing as the frustration param
decreases.

The long range of the antiferromagnetic interaction in
Coulomb frustrated ferromagnet also brings about additio
limitations on the mean-field approach. On general groun
one can expect the mean-field description to reproduce
topology of the phase diagram correctly, but to become
creasingly inaccurate as one approaches the transition
both from below and from above, because it overlooks
role of fluctuations. In the present case, the fluctuations h
a major effect on the transition line: as argued by Brazov
@30# on the basis of a self-consistent Hartree treatment o
field-theoretical model with properties similar to that of Co
lomb frustrated Ising ferromagnet,3 and confirmed by Monte
Carlo simulations@15#, the fluctuations drive the order
disorder transition from second to first order. The mean-fi
approach is thus questionable in the vicinity of the transit
line ~which is why it may not be worth pursuing the sear
for devil’s staircases as was done for the ANNNI mod
@23,32#!. However, the main points reviewed above are
affected.

APPENDIX A: CALCULATION OF THE COULOMBIC
ENERGY OF LAMELLAR PHASES IN REAL SPACE

The calculation of the ground-state energy due to
long-range Coulombic interaction can be performed as
lows. For lamellar phases, the sum over the reciprocal v
tors is performed along one direction. One then obtains
one-dimensional potential corresponding to the inverse
tice Laplacian@14#,

W~ i !52pQ
exp~2au i u!21

a
, ~A1!

wherea is a convergence factor that will be taken to zero
the end of the calculation. The introduction ofa.0 in the
calculation allows one to handle conditionally converge
sums. The average Coulombic energy per site of a cell 2m is
given by

3It is worth pointing out that the field-theoretical description of t
symmetric diblock copolymer systems has also been shown to
long to the class of ‘‘Brazovskii’’ Hamiltonians@13,22,31#.
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EC5
1

4m (
N852`

1`

(
i , j 51

2m

W~ u i 2 j 12mN8u!SiSj , ~A2!

whereN8 is the index for labeling the right and left cells an
i , j denote sites within the cell. The energy per site can
divided into two parts: the first one comes from the intera
tion between the spins within the cell and the second
comes from the interaction between a spin and its image
the other cells; this reads

EC5E11E25
1

4m (
i , j 51

2m

W~ u i 2 j u!SiSj

1
1

4m (
N8Þ0

(
i , j 51

2m

W~ u i 2 j 12mN8!SiSj . ~A3!

By considering all contributions between pairs of sites with
the cell, one gets forE1

E15
1

2m S m„W~0!2W~m!…1 (
n51

m21

@2~m2n!2n#W~n!

2 (
n5m11

2m21

@~2m2n!2n#W~n!D . ~A4!

After some calculation, and taking the limita→0 at the end,
one gets

E15QS 2pm2

3
1

p

3 D . ~A5!

The sum over the right and the left cells can also be p
formed, andE2 is then given by

E25
pQ

2m (
i , j 51

2m
e2a(2m1 i 2 j )1e2a(2m1 j 2 i )

a~12e2a2m!
SiSj . ~A6!

By using the electro-neutrality condition (( iSi50), and in
the limit a→0, one obtainsE2, which has a finite value:

E25
pQ

4m2 (
i , j

~ i 2 j !2SiSj52
pQ

2m2U(i 51

2m

iSiU2

52
pQm2

2
.

~A7!

This gives for the Coulombic energyEc

Ec5QS pm2

6
1

p

3 D . ~A8!

By subtracting the self-energy of the inverse lattice Lapl
ian potential to Eq.~A8!, one exactly recovers Eq.~10!.

APPENDIX B: GROUND-STATE ENERGY
OF TUBULAR AND ORTHORHOMBIC PHASES

Let us calculate the energy per site for configuratio
whose phases are periodic with a orthorhombic cell (m1
3m23m3). The short-range energy per spin is obtained
e-
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ESR52JS 32
2

m1
2

2

m2
2

2

m3
D . ~B1!

In the reciprocal space, the allowed wave vectors have components@(2n111)p/m1 ,(2n211)p/m2 ,(2n311)p/m3#, with
0<n1,m121, 0<n2,m221, 0<n3,m321, so that the Coulombic energy per spinEc is given by

Ec5QF (
n150

m121

(
n250

m221

(
n350

m321 S p

F (
a51

3

sinS ~2na11!p

2ma
D 2G )

a51

3

sinS ~2na11!p

2ma
D 2D 22pv~0!G . ~B2!
r
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c
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When bothm2 andm3 go to infinity, one obtains lamella
phases of period 2m, and Eq.~B2! reduces to Eq.~10!.

When the periodic structure loses translational invaria
in a second direction, one obtains a lattice of tubes wh
perpendicular section is a rectangular cellm13m2. Although
we have not obtained a fully analytical expression for su
phases, some results can be derived. The Coulombic en
for tubes of sectionm13m2 is bounded as follows:

Ec„inf~m1 ,m2!…<Ec~m1 ,m2!<Ec„sup~m1 ,m2!….
~B3!

If p3m15m25m, wherep is a positive integer, the energ
Ec(m) behaves as

Ec~m2!.C~p!m21O~m!, ~B4!

where the numerical coefficientsC(p) are summarized in
Table I.

We have also calculated numerically, via Eqs.~B1! and
~B2! the total energy of modulated orthorhombic phas
(m13m23m3) when`.m1 ,m2 ,m3.1. It is always higher
than that of the phases (13m23m3) or (1313m3).

APPENDIX C: MIXED LAMELLAR PHASES

The inverse Laplacian approximation allows one to cal
late exactly the energy of a large number of periodic str
tures at zero temperature. As an illustration we present h
the results for mixed lamellar phases that are poten
ground-state candidates in the region ofQ/J where the most
stable among the simple lamellar phases involve lamella
width m51 ~phasê 1&) andm52 ~phasê 2&).

TABLE I. Coefficient of the leading term of the Coulombi
energy per site for periodic tubular structuresp51,2,3,5,̀ .

p C(p) C(p)* p2

1 0.222 08 0.222 08
2 0.089 083 0.356 33
3 0.045 957 0.413 61
4 0.027 568 0.441 09
5 0.018 304 0.457 6
` 0 p/650.523 59 . . .
e
e

h
rgy

s

-
-
re
al

of

1. The Š1n2p
‹ phases

The ^1n2p& phases are the simplest mixed phases that
can construct with the two elementary bricks formed by
mellae of widthm51 andm52: they are formed by a pe
riodic sequence of ferromagnetically aligned layers who
fundamental period consists ofn one-layer lamellae followed
by p two-layer lamellae, two successive lamellae bei
formed by spins of opposite signs. Because of the elec
neutrality ~zero magnetization! condition, one has to distin
guish three different families: (n52q,p52r ), (n52q
11,p52r ), and (n52q,p52r 11), whereq andr are inte-
gers. Thê 12q1122r 11& phases are not allowed at zero tem
perature because they it does not satisfy the electroneutr
condition. Because of the two-dimensional in-layer ferr
magnetic ordering, the wave vectors characterizing lame
phases have only one nonzero component.

a. The k12q22rl phases

The size of the one-dimensional unit cell isL52q14r
and the allowed values of the nonzero components of
wave vector arek52p l /(2q14r ) wherel is an integer such
that l 50, . . . ,2q14r 21. Summing over all sites of the lat
tice, one finds

uŜ~k!u5
AN

2q14r

usin~2rk !u

Ucos~k!cosS k

2D U
5

AN

2q14r

usin~qk!u

Ucos~k!cosS k

2D U , ~C1!

if kÞ6p/2 and kÞp. Otherwise, one obtainsuŜ(6p/2)u
5@AN/(2q14r )#A8r and uŜ(p)u5@AN/(2q14r )#2q.

Using the identities

(
l 51

q12r 21 sinS qp l

q12r D
2

cosS p l

q12r D
2

cosS p l

2~q12r ! D
2 58r ~r 1q!

~C2!

and



t

th
f

e

ity
he

n

n by

tem.

le
rting
nge

ults
to

e

the
of

.

PRE 62 7791PHASE DIAGRAM OF AN ISING MODEL WITH LONG- . . .
(
l 51

q12r 21 sinS qp l

q12r D
2

sinS 2p l

q12r D
2 5r ~r 1q!, ~C3!

one can express the Coulombic energy per spin as

Ec5QFp
2q2116r 2116qr

~2q14r !2
22pv~0!G . ~C4!

The short-range contribution can be easily calculated and
total energy per spin is equal to

E^12q22r &5JS 221
q

q12r D
1QS p

2q2116r 2116qr

~2q14r !2
22pv~0!D .

~C5!

It is now easy to show that the above energy, whatever
strictly positive values ofq and r and whatever the value o
Q/J, cannot be less than either the energy of the^1& phase or
that of the ^2& phase. Indeed, for the conditionsE^12q22r &
<E^1& andE^12q22r &<E^2& to be simultaneously satisfied, on
must have

2q14r

pq
<Q/J<

q12r

p~q1r !
, ~C6!

which is impossible.

b. The k12q¿1l and k12q22r¿1l phases

To satisfy the requirement of the global electroneutral
the unit cell of such phases is built as follows. For t
^1n22r& phases, withm52q11, the unit cell is

and the nonzero components of the wave vector are give
k52p l /(8r 12n) where l 51 . . . 8r 12n21. After some
algebra, the Fourier transform of the spin variableŜ(k) is
obtained as

uŜ~k!u5
AN

2n18r

2UcosS nk

2 D U
Ucos~k!cosS k

2D U ~C7!

if kÞp and uŜ(p)u5@AN/(2n18r )#2n. The total energy
per spin is then
he

e

,

by

E^1n22r &5JS 221
2n

2n18r D
1QS p

2n2164r 2132rn

~2n18r !2
22pv~0!D . ~C8!

The ^12q2m& phase withm52r 11 is characterized by the
sequence

and the nonzero components of the wave vector are give
k52p l /(4m14q) with l 51 . . . 4m14q21. This leads to

uŜ~k!u5
AN

4q14m

2usin~qk!u

Ucos~k!cosS k

2D U ~C9!

if kÞ6p/2, anduŜ(6p/2)u5AN/(4q14m)2A2q. The to-
tal energy per spin is finally given by

E^12q2m&5JS 221
q

q1mD
1QS p

32q2164m2132mq

~4q14m!2
22pv~0!D .

~C10!

As before, there is no range of the frustration parameterQ/J
for which these phases become ground states of the sys

2. Energy of defects in theŠ2‹ phase

The issue of the stability of the mixed versus simp
lamellar phases can be addressed in a different way. Sta
from the ^2& phase, one can calculate the energy cha
brought by inserting one or several defects of type^1& within
the periodic structure. The creation of one such defect res
from the flip of a pair of up-down spins. This corresponds
the simplest excitation that one expects in the^2& phase:
. . . ↑↑↓↓↑↑↓↓ . . . ⇒ . . . ↑↑↓↑↓↑↓↓ . . . The resulting de-
fective structure can also be viewed as a^1422m& phase
wherem→`. The Coulombic energy of â1422m& structure
for a cell of size 414m is derived from Eq.~C4! and reads

ec^1422m&5~414m!Ec^1422m&

5QFp 214m218m

11m
22pv~0!~414m!G .

~C11!

If one subtracts the Coulombic energy of the^2& phase for
the same unit cell (l 5414m) from the above equation, on
obtains the Coulombic energy for one excitation in a^2&
phase. Strikingly, this energy goes to zero whenm goes to
infinity, which means that the presence of one defect in
^2& phase does not change at all the Coulombic energy
this phase.~This is not a result of the macroscopic limit!
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Conversely, this defect has a short-range energy cost th
easily obtained asESR54. In all the region of frustration
parametersQ/J where thê 2& phase is more stable than an
other simple lamellar phase, the presence of one defe
then energetically unfavorable for the system.

We have also calculated the energy of a^2& phase where
two defects have been introduced. We have first calcula
the energy of the^22m12p22n12q& and ^22m12n12p12q&
ry

ys

s

is

is

d

phases that are identical. Settingp5q52, whereasn,m
→`, one obtains the energy of the^2& phase in the presenc
of two defects. We have also found that the introduction
the two defects is energetically unfavorable for the syst
for any value of the frustration. Although we have not o
tained a general proof, the phase-locking into simple lame
phases at zero temperature seems to be well establishe
the model.
G.

K.

s.
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